

Lp(a) 21 FS*

Reagenz für die quantitative In-vitro-Bestimmung von Lipoprotein (a) [Lp(a)] in Serum oder Plasma am DiaSys respons®920

Bestellinformation

Bestell-Nr. 1 7139 99 10 921

4 Twincontainer mit jeweils 100 Bestimmungen

Methode

Partikelverstärkter immunturbidimetrischer Test

Prinzip

Bestimmung der Konzentration von Lp(a) durch photometrische Zweipunktmessung der Antigen-Antikörper-Reaktion zwischen den mit Antikörpern beschichteten Partikeln und dem in der Probe vorliegenden Lp(a).

Reagenzien

Bestandteile und Konzentrationen

R1: Glycinpuffer pH 8,3 < 1,5 %
R2: Glycinpuffer pH 8,2 < 1,5 %
Antikörper (Kaninchen) gegen humanes Lp(a) gebunden an Latexpartikel

Lagerung und Haltbarkeit der Reagenzien

Die Reagenzien sind bei $2-8\,^{\circ}\mathrm{C}$ bis zum Ende des auf der Packung angegebenen Verfallsmonats verwendbar, wenn nach dem Öffnen der Flaschen Kontaminationen vermieden werden. Reagenzien nicht einfrieren!

Warnungen und Vorsichtsmaßnahmen

- Die Reagenzien enthalten Natriumazid (0,9 g/L) als Konservierungsmittel. Nicht verschlucken! Berührung mit Haut und Schleimhäuten vermeiden.
- Die Reagenzien enthalten biologisches Material. Behandeln Sie das Produkt als potentiell infektiös gemäß allgemein anerkannter Vorsichtsmaßnahmen und guter Laborpraxis.
- 3. Zur Vermeidung von Verschleppungen muss nach Benutzung bestimmter Reagenzien sorgfältig gespült werden. Bitte beachten Sie die DiaSys respons®920 Carryover Pair Tabelle. Verschleppungspaare und automatisierte Waschschritte mit der empfohlenen Waschlösung können in der Systemsoftware hinterlegt werden. Bitte berücksichtigen Sie dabei das Gerätehandbuch.
- In sehr seltenen Fällen kann es bei Proben von Patienten mit Gammopathien zu verfälschten Ergebnissen kommen [8].
- 5. Beachten Sie bitte die Sicherheitsdatenblätter und die notwendigen Vorsichtsmaßnahmen für den Gebrauch von Laborreagenzien. Für diagnostische Zwecke sind die Ergebnisse stets im Zusammenhang mit der Patientenvorgeschichte, der klinischen Untersuchung und anderen Untersuchungsergebnissen zu werten.
- 6. Nur für professionelle Anwendung!

Entsorgung

Bitte beachten Sie die jeweiligen gesetzlichen Vorschriften.

Vorbereitung der Reagenzien

Die Reagenzien sind gebrauchsfertig. Die Flaschen werden direkt in den Reagenzrotor gestellt.

Probenmaterial

Serum, Heparin-Plasma oder EDTA-Plasma

Stabilität [1]:

2 Tage bei 20 - 25 °C 2 Wochen bei 4 - 8 °C 3 Monate bei -20 °C

Kontaminierte Proben verwerfen. Nur einmal einfrieren.

Kalibratoren und Kontrollen

Für die Kalibrierung wird das DiaSys TruCal Lp(a) 21 Kalibratorset empfohlen. Die Kalibratorwerte in nmol/L sind rückverfolgbar auf das WHO/IFCC Referenzmaterial SRM® 2B, die Kalibrationswerte in mg/dL auf eine Referenzpräparation. Für die interne Qualitätskontrolle sollte eine DiaSys TruLab Lp(a)-Kontrolle gemessen werden. Jedes Labor sollte Korrekturmaßnahmen für den Fall einer Abweichung bei der Kontrollwiederfindung festlegen.

	•			
	Bestell-Nr. Packungsg			sgröße
TruCal Lp(a) 21 (5 Level)	1 7140 99 10 059	5	Χ	1 mL
TruLab Lp(a) Level 1	5 9830 99 10 046	3	Х	1 mL
TruLab Lp(a) Level 2	5 9840 99 10 046	3	Х	1 mL

Leistungsmerkmale

5					
Messbereich bis zu 110 mg/dL (260 nmol/L) Lp(a), abhängig von der					
Konzentration des höchsten Kalib	Konzentration des höchsten Kalibrators (bei höheren Konzentrationen				
Proben nach manueller Verdünnun	g mit NaCI-Lösung (9 g/L) oder über				
Rerun-Funktion nachbestimmen).					
Nachweisgrenze**	2 mg/dL Lp(a)				
Kein Prozoneneffekt bis 400 mg/dL (800 nmol/L) Lp(a)					
Stabilität im Gerät 6 Wochen					
Kalibrationsstabilität 4 Wochen					

Interferenzen < 10% durch	
Bilirubin bis 40 mg/dL	
Hämoglobin bis 500 mg/dL	
Rheumafaktor bis 500 IU/mL	
Lipämie (Triglyceride) bis 2000 mg/dL	
Weitere Informationen zu Interferenzen finden Sie bei Young DS [2].	

Präzision			
In der Serie (n=20)	Probe 1	Probe 2	Probe 3
Mittelwert [mg/dL]	29,3	46,0	83,9
Variationskoeffizient [%]	2,31	1,42	2,97
Von Tag zu Tag (n=20)	Probe 1	Probe 2	Probe 3
Mittelwert [mg/dL]	26,2	31,1	67,7
Variationskoeffizient [%]	3,64	3,55	1,98

Methodenvergleich (n=130)				
Test x	DiaSys Lp(a) 21 FS (Hitachi 917)			
Test y	DiaSys Lp(a) 21 FS (respons®920)			
Steigung	1,015			
Achsenabschnitt	0,50 mg/dL			
Korrelationskoeffizient	0,998			

^{**} niedrigste messbare Konzentration, die von Null unterschieden werden kann; Mittelwert + 3 SD (n=20) einer analytfreien Probe

Referenzbereich

< 30 mg/dL [4]

< 75 nmol/L für Kaukasier [7]

Jedes Labor sollte die Übertragbarkeit der Referenzbereiche für die eigenen Patientengruppen überprüfen und gegebenenfalls eigene Referenzbereiche ermitteln.

Literatur

- Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1 st ed. Darmstadt: GIT Verlag; 2001; p. 36-7.
 Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th. ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press, 2000.
- Nordestgaard BG, Chapman MJ, Ginsberg HN. Lipoprotein (a): EAS Recommendations for Screening, Desirable Levels and Management. The European Atherosclerosis Society (EAS) 3. Consensus Panel 2012.
- Riesen WF. Lipid metabolism. In: Thomas L, editor. Clinical laboratory diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 174-5.
- Rifai N, Bachorik PS, Albers JJ. Lipids, lipoproteins and apolipoproteins. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 5. 1999. p. 809-61.
- Marcovina SM, Koschinsky ML. Lipoprotein (a): Structure, measurement and clinical significance. In: Rifai N, Warnick GR, Dominiczak MH, eds. Handbook of lipoprotein testing. Washington: AACC Press; 1997. p. 283-313.
- Marcovina SM, Koschinsky ML et al. Report of the national heart, lung, and blood institute workshop of Lipoprotein(a) and cardiovascular disease: recent advances and future directions. Clin Chem 2003; 49(11): 1785-96.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. ClinChemLabMed 2007;45(9):1240-1243.

Hersteller

DiaSys Diagnostic Systems GmbH Alte Straße 9 65558 Holzheim Deutschland

Lp(a) 21 FS

Applikation für Serum und Plasma

Test I	Details	Test Vo	lumes	Reference	Ranges
Test	: LPA			Auto Rerun	
Report Name	: Lipoprotein (a)			Online Calibration	
Unit	: mg/dL	Decimal Places	: 2	Cuvette Wash	Ø
Wavelength-Primary	: 700	Secondary	: 0	Total Reagents	: 2
Assay Type	: 2-Point	Curve Type	: Cubic Spline	Reagent R1	: LPA R1
M1 Start	: 19	M1 End	: 19	Reagent R2	: LPA R2
M2 Start	: 33	M2 End	: 33		
Sample Replicates	: 1	Standard Replicates	: 3	Consumables/Cali	brators:
Control Replicates	: 1	Control Interval	: 0	Blank /Level 0	0
Reaction Direction	: Increasing	React. Abs. Limit	. *	Calibrator Level 1	**
Prozone Limit %	: 97	Prozone Check	: Lower	Calibrator Level 2	**
Linearity Limit %	: 0	Delta Abs./Min.	: 0.0000	Calibrator Level 3	**
Technical Minimum	. *	Technical Maximum	: *	Calibrator Level 4	**
Y = aX + b $a=$: 1.0000	b=	: Calibrator 5	Calibrator Level 5	**

Tes	t Details	Test V	olumes	Reference Ranges
est Sample Type	: LPA : Serum			
	Sample	Volumes		Sample Types
Normal	: 3.00 μL	Dilution Ratio	: 1 X	☑ Serum □ Urine
Increase	: 10.00 μL	Dilution Ratio	: 1 X	□ CSF ☑ Plasma
Decrease	: 2.00 μL	Dilution Ratio	: 1 X	☐ Whole Blood☐ Other
Standard Volum	ne : 3.00 μL			
	Reagent Volume	s and Stirrer Speed	ı	
RGT-1 Volume	: 120 μL	R1 Stirrer Speed	: High	
RGT-2 Volume	: 60 µL	R2 Stirrer Speed	: High	

Test	Details	Test Volumes	Reference Ranges
Test Sample Type	: LPA : Serum		
Reference Range Category	: DEFAULT : Male		
	Reference Ran	ige	Sample Types
	Lower Limit (mg/dL)	Upper Limit (mg/dL)	☑ Serum □ Urine □ CSF ☑ Plasma □ Whole Blood
Normal	: 0.00	30.00	□ Other
Panic	: 0.00	0.00	

^{*} Die technischen Grenzen und das Absorbance Limit werden automatisch von der Software über den unteren und oberen Kalibratorwert definiert.
** Bitte Kalibratorwert eingehen