

Myoglobin FS*

Diagnostic reagent for quantitative in vitro determination of myoglobin in serum or plasma on **BioMajesty JCA-BM6010/C**

Order Information

Cat. No. 1 7098 99 10 966 R1: 2 x 100 tests R2: 2 x 100 tests

Method

Particle enhanced immunoturbidimetric test

Principle

Determination of the myoglobin concentration by photometric measurement of antigen-antibody-reaction among antibodies against human myoglobin coated to latex particles and myoglobin present in the sample.

Reagents

Components and Concentrations

R1:	Buffer	pH 8.3	
	Glycine		< 1.5%
R2:	Buffer	pH 7.3	
	Glycine		< 1.5%
	Latex particles	coated with	< 1%
	anti-myoglobin	antibodies (rabbit)	

Storage Instructions and Reagent Stability

The reagents are stable up to the end of the indicated month of expiry, if stored at 2-8°C and contamination is avoided. Do not freeze the reagents!

Warnings and Precautions

- 1. The reagents contain sodium azide (0.9 g/L) as preservative. Do not swallow! Avoid contact with skin and mucous membranes!
- 2. The reagents contain animal material. Handle the product as potentially infectious accord ing to universal precautions and good clinical laboratory practices.
- 3. In very rare cases, samples of patients with gammopathy might give falsified results [10].
- 4. Please refer to the safety data sheets and take the necessary precautions for the use of laboratory reagents. For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings.
- 5. For professional use only!

Waste Management

Please refer to local legal requirements.

Reagent Preparation

The reagents are ready to use. The bottles are placed directly into the reagent trays. The latex reagent (R2) must be carefully mixed before use.

Specimen

Serum or plasma (EDTA, heparin, citrate)

Stability [1]:	2 days	at	15 – 25°C
-	1 week	at	2 – 8°C
	3 months	at	–20°C

Discard contaminated specimens. Freeze only once!

Calibrators and Controls

For calibration, the DiaSys TruCal Myoglobin calibrator set is recommended. The assigned values of TruCal Myoglobin calibrator values have been made traceable to a reference preparation based on pure antigen. For internal quality control a DiaSys TruLab Protein control should be assayed. Each laboratory should establish corrective action in case of deviations in control recovery.

	Cat. No.	ł	Kit si	ize
TruCal Myoglobin (4 Levels)	1 7030 99 10 058	4	х	1 mL
TruLab Protein Level 1	5 9500 99 10 046	3	х	1 mL
TruLab Protein Level 2	5 9510 99 10 046	3	х	1 mL

Reagent information

Performance Characteristics

Measuring range from 7 up to 600 μ g/L myoglobin, at least up to the concentration of the highest calibrator		
(in case of higher concentrations re-measure samples after manual dilution with NaCl solution (9 g/L) or use the rerun function).		
Limit of detection** 2 µg/L myoglobin		
No prozone effect up to 15000 µg/L myoglobin		
On-board stability 10 weeks		
Calibration stability 6 weeks		

Interferences < 10% by
Bilirubin (conjugated and unconjugated) up to 60 mg/dL
Hemoglobin up to 1000 mg/dL
Lipemia (triglycerides) up to 1000 mg/dL
For further information on interfering substances refer to Young DS [2]

Precision		-	-
Within run (n=20)	Sample 1	Sample 2	Sample 3
Mean [µg/L]	30.6	63.6	200
Coefficient of variation [%]	2.40	1.15	0.62
Between run (n=20)	Sample 1	Sample 2	Sample 3
Mean [µg/L]	34.0	66.0	203
Coefficient of variation [%]	2.70	1.79	0.97

Method comparison (n=126)		
Test x	DiaSys Myoglobin FS (Hitachi 912)	
Test y	DiaSys Myoglobin FS	
	(BioMajesty JCA-BM6010/C)	
Slope	0.989	
Intercept	1.70 μg/L	
Coefficient of correlation	0.9999	

lowest measurable concentration which can be distinguished from zero mean + 3 SD (n=20) of an analyte free specimen

Conversion factor

Myoglobin $[\mu g/L] \times 0.0585 = Myoglobin [nmol/L]$

Reference Range [3]

Men and women $< 70 \mu g/L (< 4.1 nmol/L)$

Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.

Literature

- 1. Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed.
- Darmstadt: GIT Verlag; 2001. p. 38-9. Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th. ed. Volume 1 2. and 2. Washington, DC: The American Association for Clinical Chemistry Press. 2000.
- Mair J, Artner-Dworzak E, Lechleitner P, Morass B, Smidt J, Wagner I et al. 3. Early diagnosis of acute myocardial infarction by a newly developed rapid
- immunoturbidimetric assay for myoglobin. Br Heart J 1992; 68: 462-8. Stone MJ, Willerson JT, Gomez-Sanchez CE, Waterman 4. Radioimmunoassay of myoglobin in human serum. Results in patients with acute myocardial infarction. J Clin Invest 1975: 56: 1334-9.
- Bhayana V, Henderson AR. Biochemical markers of myocardial damage. 5. Clin Biochem 1995; 28: 1-29.
- Zaninotto M, Altinier S, Lachin M, Celegon L, Plebani M. Strategies for the early diagnosis of acute myocardial infarction using biochemical markers. 6.
- Am J Pathol 1999; 111: 399-405. De Winter RJ, Koster RW, Sturk A, Sanders GT. Value of myoglobin, troponin T and CK-MB mass in ruling out myocardial infarction in the 7.
- emergency room. Circulation 1995; 92: 3401-7. Laperche T, Steg PG, Dehoux M, Benessiano I, Grollier G, Aliot E et al. A 8. study of biochemical markers of reperfusion early after thrombolysis for
- acute myocardial infarction. Circulation 1995; 92: p. 2079-86. Baum H, Booksteegers P, Steinbeck G, Neumeier D. A rapid assay for the 9 quantification of myoglobin: evaluation and diagnostic relevance in the diagnosis of acute myocardial infarction. Eur J Clin Chem Biochem 1994; 32: 853-8.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry 10. assays: Mechanisms, detection and prevention. Clin Chem Lab Med 2007; 45(9): 1240-1243.

Manufacturer

DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Holzheim Germany

Myoglobin FS

Chemistry code 10 709

Application for serum and plasma samples

This application was set up and evaluated by DiaSys. It is based on the standard equipment at that time and does not apply to any equipment modifications undertaken by unqualified personnel.

Analytical Conditions		
R1 volume	60	
R2e volume	0	
R2 volume	20	
R1 diluent vol	0	
R2e diluent vol	0	
R2 diluent vol	0	
Sample vol (S)	2.0	
Sample vol (U)	2.0	
Reagent 1 mix	strong	
Reagent 2e mix	weak	
Reagent 2 mix	strong	
Reaction time	10	

Sub-analy. Conditions		
Name	MYO	
Digits	2	
M-wave L.	571	
S-wave.L	884	
Analy.mthd.	EPA	
Calc.mthd.	MSTD	
Qualit. judge	No	

Analysis Test Condition Setting (M)		
Sample Type	Serum	Urine
Reac. sample vol.	2.0	2.0
Diluent method	No dil	No dil
Undil. sample vol.	0	0
Diluent volume	0	0
Diluent position	0	0

Endpoint Method		
Re.absorb (u)	9.999	
Re.absorb (d)	-9.999	

Calculation Method Setting		
M-DET.P.I	0	
M-DET.P.m	36	
M-DET.P.n	37	
S-DET.P.p	22	
S-DET.P.r	23	
Check D.P.I.	0	
Limit value	0.003	
Variance	10	
Reac.type	Inc.	

Reaction Rate Method					
Cycle	2				
Factor	2.0				
E2 corre	Not do				
Blank (u)	9.999				
Blank (d)	-9.999				
Sample (u)	9.999				
Sample (d)	-9.999				

Prozone					
Prozone form	No				
Prozone limit	9.999				
Prozone judge	Upper limit				
Judge limit	9.999				
M-DET.P.m	0				
M-DET.P.n	0				
S-DET.P.p	0				
S-DET.P.r	0				

MULTI-STD Setting											
Formula	Spline		Axis Conv	No conv							
Blank	Blank-any value		Points	5							
	FV	Reac.	Dil.	Dil. smp.	Diluent	Diluent	STD H	STD L			
		smp. vo	ol. method	vol.	vol.	pos.					
BLK	#	2.0	No dil	0	0	0	9.999	-9.999			
1	#	2.0	No dil	0	0	0	9.999	-9.999			
2	#	2.0	No dil	0	0	0	9.999	-9.999			
3	#	2.0	No dil	0	0	0	9.999	-9.999			
4	#	2.0	No dil	0	0	0	9.999	-9.999			

entered by user