Bilirubin Auto Direct FS* (Bilirubine Auto Directe FS*)

Présentation

Référence	Composition du kit				
1 0821 99 10 021	R1	5 x 20 mL	+	R2	1 x 25 mL
1 0821 99 10 026	R1	5 x 80 mL	+	R2	1 x 100 mL
1 0821 99 10 023	R1	1 x 800 mL	+	R2	1 x 200 mL
1 0821 99 10 704	R1	8 x 50 mL	+	R2	8 x 12,5 mL
1 0821 99 10 930	R1	4 x 20 mL	+	R2	2 x 10 mL

Emploi Prévu

Réactif de diagnostic in vitro pour la détermination quantitative de la bilirubine directe dans le sérum humain ou le plasma recueilli sur héparine sur systèmes photométriques automatisés.

Intérêt Clinique

La bilirubine est un produit de dégradation de l'hémoglobine. La bilirubine libre, non conjuguée, est fortement non polaire et pratiquement insoluble dans l'eau ; c'est pourquoi elle forme un complexe avec l'albumine pour passer dans le sang de la rate vers le foie. Dans le foie, la bilirubine se conjugue avec l'acide glucuronique et le conjugué résultant, soluble dans l'eau, est excrété par les voies biliaires. L'hyperbilirubinémie peut avoir pour origine une production accrue de bilirubine à la suite d'une hémolyse (ictère pré-hépatique), des lésions du parenchyme hépatique (ictère hépatique) ou une occlusion des voies biliaires (ictère post-hépatique). Le syndrome de Gilbert est une hyperbilirubinémie (essentiellement non conjuguée) congénitale chronique, d'apparition fréquente dans la population. Des valeurs élevées de bilirubine peuvent être observées chez 60 à 70 % des nouveau-nés en raison d'une lyse post-natale accrue des érythrocytes et d'un retard de fonctionnement des enzymes de dégradation de la bilirubine. Les méthodes habituelles d'analyse pour la détermination de la bilirubine mesurent, soit la bilirubine totale, soit la bilirubine directe : dans le cas de la bilirubine directe. c'est essentiellement la bilirubine conjuguée, soluble dans l'eau, qui est mesurée. Le taux de bilirubine non conjuguée peut alors être estimé par la différence entre la bilirubine totale et la bilirubine directe. [1,2]

Méthode

Test photométrique DCA (2,4-dichloroaniline)

La bilirubine directe forme avec la 2,4-dichloroaniline diazotée, en milieu acide, un azocomposé coloré en rouge. [3]

Réactifs

Composants et Concentrations

R1:	EDTA-Na₂	0,1 mmol/L
	NaCl	150 mmol/L
	Acide sulfamique	100 mmol/L
R2:	2,4-Dichloroaniline	0,5 mmol/L
	HCI	900 mmol/L
	EDTA-Na ₂	0,13 mmol/L

Conservation et Stabilité

Les réactifs sont stables jusqu'à la date de péremption indiquée sur le coffret, conservés entre +2 °C et +8 °C en évitant toute contamination. Ne pas congeler et conserver à l'abri de la lumière.

Avertissements et Précautions d'Emploi

- Réactif 1 et 2 : Attention. H290 Peut être corrosif pour les métaux. P234 Conserver uniquement dans l'emballage d'origine. P390 Absorber toute substance répandue pour éviter qu'elle attaque les matériaux environnants.
- 2. Dans de très rares cas, des spécimens de patients souffrants de gammapathie peuvent produire des valeurs fausses [4].
- Les médicaments à base d'eltrombopag conduisent aux résultats faussement bas ou élevés dans les spécimens de patients.
- 4. Merci de vous référer aux fiches de sécurité et prendre les précautions nécessaires pour l'utilisation de réactifs de laboratoire. Pour le diagnostic, les résultats doivent toujours être exploités en fonction de l'historique médical du patient, des examens cliniques ainsi que des résultats obtenus sur d'autres paramètres.
- 5. Uniquement à usage professionnel.

Gestion des Déchets

Se référer aux exigences légales nationales.

Préparation du Réactif

Les réactifs sont prêts à l'emploi.

Matériels Nécessaires

Équipement général de laboratoire

Spécimen

Sérum humain ou plasma recueilli sur héparine

Protéger le spécimen de la lumière.

Stabilité [5]:

2 jours entre +20 °C et +25 °C 7 jours entre +4 °C et +8 °C 6 mois à -20 °C

si le spécimen est congelé immédiatement.

Une seule congélation. Éliminer les échantillons contaminés.

Mode Opératoire

Configuration de base sur BioMajesty®JCA-BM6010/C

Longueur d'onde	545/658 nm
Température	+37 °C
Mesure	Point final
Échantillon/Calibrant	3,5 µL
Réactif 1	80 μL
Réactif 2	20 μL
Ajout réactif 2	Cycle 19 (286 s)
Absorbance 1	Cycle 17/18 (230 s/244 s)
Absorbance 2	Cycle 32/41 (464 s/586 s)
Calibration	Linéaire

Calcul

Avec calibrant

Bilirubine [mg/L] = $\frac{\Delta A \text{ \'echantillon}}{\Delta A \text{ Cal.}} \times \text{Conc.Cal. [mg/L]}$

Facteur de Conversion

Bilirubine [mg/dL] x 17,1 = Bilirubine [µmol/L]

Calibrants et Contrôles

TruCal U de DiaSys est recommandé pour la calibration. Les valeurs du calibrant sont établies par rapport au test manuel Jendrassik-Gróf. Utiliser TruLab N et P de DiaSys pour le contrôle de qualité interne. Chaque laboratoire établira la procédure à suivre si les résultats se situent en dehors des limites de confiance.

	Référence	Prése	entat	ion
TruCal U	5 9100 99 10 063	20	Х	3 mL
	5 9100 99 10 064	6	Х	3 mL
TruLab N	5 9000 99 10 062	20	Х	5 mL
	5 9000 99 10 061	6	Х	5 mL
TruLab P	5 9050 99 10 062	20	Х	5 mL
	5 9050 99 10 061	6	Х	5 mL

Performances

Données évaluées sur BioMajesty® JCA-BM6010/C

Les données exemplaires citées en bas peuvent varier légèrement en cas de conditions de mesure déviantes.

Domaine de mesure jusqu'à 10 Au-delà de cet intervalle, dilue NaCl (9 g/L) et multiplier le résu	er le spécimen 1 + 1 avec du
Limite de détection**	0,01 mg/dL

I	<u> </u>	
Substance interférente	Interférences ≤ 10 % jusqu'à	
Acide ascorbique	30 mg/dL	
L'hémoglobine interfère à de faibles concentrations.		
Lipémie (Triglycérides) 600 mg/dL		
Pour plus d'information au sujet des interférences, voir Young DS [6,7].		

Précision			
Intra série (n=20)	Échantillon 1	Échantillon 2	Échantillon 3
Moyenne [mg/dL]	0,25	1,52	2,90
CV [%]	2,79	1,55	1,96
Inter série (n=20)	Échantillon 1	Échantillon 2	Échantillon 3
Moyenne [mg/dL]	0,85	2,20	2,35
CV [%]	2,49	1,86	1,63

Comparaison de méthodes (n=109)		
Test x	Bilirubine Auto Directe FS de DiaSys (Hitachi 917)	
Test y	Bilirubine Auto Directe FS de DiaSys (BioMajesty® JCA-BM6010/C)	
Pente	1,02	
Ordonnée à l'origine	-0,004 mg/dL	
Coefficient de corrélation	0,999	

^{**} Concentration mesurable la plus basse qui peut être distinguée de zéro ; Moyenne + 3 SD (n = 20) d'un spécimen exempt d'analyte.

Valeurs Usuelles [1]

Adultes et enfants $\leq 0.2 \text{ mg/dL} \leq 3.4 \text{ } \mu\text{mol/L}$

Chaque laboratoire devrait vérifier si les valeurs usuelles sont transmissibles à sa propre population patiente et déterminer ses propres valeurs de référence si besoin.

Références Bibliographiques

- Thomas L ed. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft, 1998: p. 192-202.
- Tolman KG, Rej R. Liver function. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 1125-77.
- Rand RN, di Pasqua A. A new diazo method for the determination of bilirubin. Clin Chem 1962;6:570-8.

- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: mechanisms, detection and prevention. ClinChemLabMed 2007;45(9):1240-1243.
- Guder WG, Zawta B et al. The Quality of Diagnostic Samples.
 1st ed. Darmstadt: GIT Verlag; 2001; p. 18-9.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.
- Young DS. Effects on Clinical Laboratory Tests Drugs Disease, Herbs & Natural Products, https://clinfx.wiley.com/aaccweb/aacc/, accessed in December 2020. Published by AACC Press and John Wiley and Sons, Inc.

DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Holzheim Allemagne www.diasys-diagnostics.com

* Fluid Stable = Liquide & Stable