

Sodium FS*

Réactif de diagnostic in vitro pour la détermination quantitative du sodium dans le sérum ou le plasma sur système DiaSys respons®910

Présentation

Référence 1 4808 99 10 921

4 flacons duo pour 100 déterminations chacun

Méthode

Test photométrique et enzymatique

Principe

La β -galactosidase catalyse la conversion de l'ONPG (orthonitrophényl- β -galacto-pyranoside) en o-nitrophenol et en galactose. L'activité de la β -galactosidase dépend de la concentration du sodium dans le dosage. L'augmentation de l'absorbance à 405 nm est proportionnelle à la concentration du sodium dans le dosage.

Réactifs

Composants et concentrations

R1 :	Tampon THAM Chélatant	pH 9,0	5,5 % 0.15 %
	β-galactosidase		0,01 %
R2:	Tampon THAM	pH 8,8	0,2 %
	ONPG		0.4 %

Conservation et stabilité des réactifs

Les réactifs sont stables jusqu'à la fin du mois de la date de péremption indiquée, conservés entre +2 °C et +8 °C en évitant toute contamination. Ne pas congeler les réactifs et les protéger de la lumière! Les flacons respons de DiaSys offrent une protection contre la lumière.

Avertissements et précautions d'emploi

- Le test de sodium est très réceptif aux contaminations de sodium. Il est expressément recommandé d'utiliser de l'équipement vitré ultra pure et des articles à usage unique!
- Dans de très rares cas, des spécimens de patients souffrant de gammapathie peuvent produire des valeurs faussées [7].
- 3. Merci de vous référer aux fiches de sécurité et prendre les précautions nécessaires pour l'utilisation de réactifs de laboratoire. Pour le diagnostic, les résultats doivent toujours être exploités en fonction de l'historique médical du patient, des examens cliniques ainsi que des résultats obtenus sur d'autres paramètres.
- 4. Uniquement à usage professionnel!

Elimination des déchets

Se référer aux exigences légales nationales.

Préparation des réactifs

Les réactifs sont prêts à l'emploi. Les flacons sont placés directement dans le compartiment réactif. Laisser revenir les réactifs à température ambiante avant l'utilisation.

Spécimen

Sérum ou plasma de lithium héparine

Stabilité [1] :

2 semaines entre +20 et +25 °C 2 semaines entre +4 et +8 °C 1 an à -20 °C

Eliminer les échantillons contaminés. Congélation unique.

Calibrants et contrôles

Pour la calibration, le calibrant TruCal E de DiaSys est recommandé. Les valeurs du calibrant sont établies par rapport au matériel de référence NIST Standard Reference Material® SRM 956. Pour le contrôle de qualité interne, les contrôles TruLab N et P devraient être utilisés. Chaque laboratoire établira la procédure à suivre si les résultats se situent en dehors des limites de confiance.

	Référence	Taille	coffret
TruCal E	1 9310 99 10 079	4 >	c 3 mL
TruLab N	5 9000 99 10 062	20	c 5 mL
	5 9000 99 10 061	6 >	c 5 mL
TruLab P	5 9050 99 10 062	20	c 5 mL
	5 9050 99 10 061	6 >	c 5 mL

Performances

Domaine de mesure 100 à 180 mmol/L de sodium		
Limite de détection** 42 mmol/L de sodium		
Stabilité à bord de l'analyseur	4 semaines	
Stabilité de calibration 1 jour		

Substance interférant	Interférences	Sodium
	< 3,0 %	[mmol/L]
Acide ascorbique	jusqu'à 500 mg/L 133	
•	jusqu'à 500 mg/L	148
Bilirubine conjuguée	jusqu'à 300 mg/L	134
	jusqu'à 200 mg/L	149
Bilirubine non conjuguée	jusqu'à 600 mg/L	135
	jusqu'à 600 mg/L	148
Lipémie (triglycérides)	jusqu'à 10 g/L	132
	jusqu'à 10 g/L	153
Hémoglobine	jusqu'à 5 g/L	127
	jusqu'à 2,5 g/L	148
Calcium	de 2 à 10 mmol/L	132
	de 2 à 10 mmol/L	149
Cuivre	jusqu'à 60 μmol/L	121
	jusqu'à 60 μmol/L	143
Fer	jusqu'à 200 µmol/L	134
	jusqu'à 270 μmol/L	157
Lithium	jusqu'à 3,7 mmol/L	136
	jusqu'à 3,3 mmol/L	150
Magnésium	jusqu'à 15 mmol/L	135
	jusqu'à 15 mmol/L	153
Potassium	de 3 à 12 mmol/L	126
	de 3 à 13 mmol/L	154
Zinc	jusqu'à 80 μmol/L	131
	jusqu'à 80 μmol/L	150
Pour plus d'information au su	jet des interférences, voir '	Young DS [2].

Etude de précision			
Intra série (n=20)	Échantillon 1	Échantillon 2	Échantillon 3
Moyenne [mmol/L]	123	138	149
Coefficient de variation [%]	1,46	1,04	1,10
Inter série (n=20)	Échantillon 1	Échantillon 2	Échantillon 3
Moyenne [mmol/L]	131	144	151
Coefficient de variation [%]	2,30	2,11	1,56

^{**} selon NCCLS, document EP17-A, vol. 24, no. 34

Comparaison de méthodes

Une comparaison du Sodium FS de DiaSys (y) avec la spectrométrie d'émission atomique à la flamme ((x) FAES), réalisée sur 128 échantillons dans un domaine de 118 à 165 mmol/L, a donné des déviations entre -6,25 et 3,56 % par rapport à la méthode de comparaison.

Une comparaison du Sodium FS de DiaSys (y) avec l'électrode ionique sélective ((x) ISE respons 8 920), réalisée sur 128 échantillon dans un domaine de 118 à 165 mmol/L, a donné des déviations d'entre -3,72 et 6,64 % par rapport à la méthode de comparaison.

Facteur de conversion

Valeurs de référence [3]

Adultes: 135 – 145 mmol/L
Enfants:
0 – 7 jour 133 – 146 mmol/L
7 – 31 jours 134 – 144 mmol/L
1 – 6 mois 134 – 142 mmol/L
6 mois – 1 an 133 – 142 mmol/L
> 1 an 134 – 143 mmol/L

Chaque laboratoire devrait vérifier si les valeurs usuelles sont transmissibles à sa propre population patiente et déterminer ses propres valeurs de référence si besoin.

Références bibliographiques

- Guder WG, Zawta B et al. The Quality of Diagnostic Samples. 1st ed. Darmstadt: GIT Verlag; 2001; p. 44-5.
 Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, CD: The American Association for Clinical Chemistry Press 2000.
- Clinical Chemistry Press 2000.

 Thomas L. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 287-295.
- Scott MG, LeGrys VA, Klutts JS. Electrolytes and blood gases. In: Burtis CA, Ashwood ER, Bruns DE editors. Tietz Textbook of Clinical Chemistry. 4th ed. St. Louis: W.B Saunders Company; 2006. p. 983-1018
- Delaney MP, Price CP, Newman DJ, Lamb E. Kidney disease. In: Burtis CA, Ashwood ER, Bruns DE editors. Tietz Textbook of Clinical Chemistry. 4th ed. St. Louis: W.B Saunders Company; 2006. p. 1671-1745.
- Demers LM, Vance ML. Pituitary Function. In: Burtis CA, Ashwood ER, Bruns DE editors. Tietz Textbook of Clinical Chemistry. 4th ed. St. Louis: W.B Saunders Company; 2006. p. 1967-2002.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: Mechanisms, detection and prevention. Clin Chem Lab Med 2007; 45(9): 1240–1243.

Fabricant

IVD (E

DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Holzheim Allemagne

Sodium FS

Application for serum and plasma samples

This application was set up and evaluated by DiaSys. It is based on the standard equipment at that time and does not apply to any equipment modifications undertaken by unqualified personnel.

Identification	
This method is usable for analysis:	Yes
Twin reaction:	No
Name:	Na
Shortcut:	
Reagent barcode reference:	057
Host reference:	057

Taabuia	
Technic	T
Type:	Linear kinetic
First reagent:[µL]	135
Blank reagent	Yes
Sensitive to light	
Second reagent:[µL]	45
Blank reagent	No
Sensitive to light	
Main wavelength:[nm]	405
Secondary wavelength:[nm]	660
Polychromatic factor:	1.0000
1 st reading time [min:sec]	5:36
Last reading time [min:sec]	7:36
Reaction way:	Increasing
Linear Kinetics Substrate depletion: Absorbance limit	0.3400
Linearity: Maximum deviation [%]	100.0000
Fixed Time Kinetics	
Substrate depletion: Absorbance limit	
Endpoint	
Stability: Largest remaining slope	
Prozone Limit [%]	

Reagents	
Decimals	
Units	

Sample	
Diluent	System water
Hemolysis:	System water
Agent [µL]	0 (no hemolysis)
Cleaner	o (no nemeryele)
Sample [µL]	0
σαπρισ [με]	0
Technical limits	
Concentration technical limits-Lower	100.0000
Concentration technical limits-Upper	180.0000
SERUM	
Normal volume [µL]	6.0
Normal dilution (factor)	1
Below normal volume [µL]	
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	
URINE	
Normal volume [µL]	6.0
Normal dilution (factor)	1
Below normal volume [µL]	
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	
PLASMA	
Normal volume [µL]	6.0
Normal dilution (factor)	1
Below normal volume [µL]	•
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	
CSF	
Normal volume [µL]	6.0
Normal dilution (factor)	1
Below normal volume[µL]	+'
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	
Whole blood	
Normal volume [µL]	6.0
Normal dilution (factor)	1
Below normal volume[µL]	1
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	1

Results	
Decimals	1
Units	mmol/L
Correlation factor-Offset	0.0000
Correlation factor-Slope	1.0000

Range	
Gender	All
Age	
SERUM	>=135.0 <=145.0
URINE	
PLASMA	>=135.0 <=145.0
CSF	
Whole blood	
Gender	
Age	
SERUM	
URINE	
PLASMA	
CSF	
Whole blood	

Contaminants
Please refer to r910 Carryover Pair Table

Calibrators details	
Calibrator list	Concentration
Cal. 1/Blank	*
Cal. 2	*
Cal. 3	
Cal. 4	
Cal. 5	
Cal. 6	
	Max delta abs.
Cal. 1	0.1
Cal. 2	0.1
Cal. 3	
Cal. 4	
Cal. 5	
Cal. 6	
Drift limit [%]	0.80

Calculations	
Model	X
Degree	1

^{*} Enter calibrator value

Application respons®910 March 2022/7