DiaSys

Diagnostic Systems

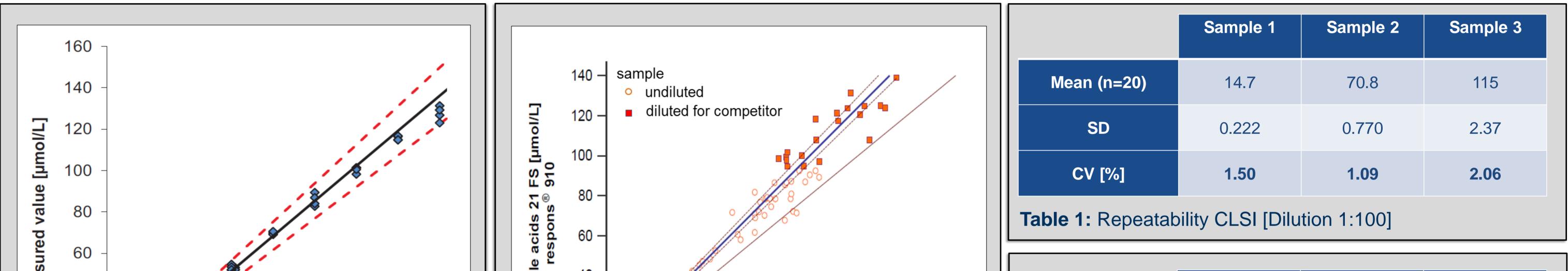
New application of the DiaSys Total bile acids 21 FS enzymatic cycling method for the determination of total bile acids in human stool samples on the automated respons[®] 910 clinical chemistry analyzer

A. Masetto¹, T. Leber¹, A. Jashari¹, I. Delseith-Hermsdorf¹, M. Grimmler^{1,2}

¹DiaSys Diagnostic Systems GmbH, Alte Strasse 9, 65558 Holzheim, Germany

²Fresenius University of Applied Science, Limburger Strasse 2, 65510 Idstein, Germany

BACKGROUND


Determination of total bile acids (TBA) in human stool plays an increasingly important role in diagnosis of bile acid malabsorption (BAM), which might lead to various gastrointestinal tract disorders, such as irritable bowel syndrome with diarrhea (IBS-D), bile acid diarrhea (BAD) or Crohn's disease. Approximately 25 – 50% of IBS-D patients and 1% of the Western population suffer from BAD. The gold standard for BAD diagnosis, the 7-days selenotaurohomocholic acid retention test (⁷⁵SeHCAT), as well as other currently applied methods display significant disadvantages [1-2]. Therefore, DiaSys introduced the innovative, liquid-stable reagent Total bile acids 21 FS for determining TBA in human stool samples on the clinical chemistry analyzer respons[®] 910.

METHODOLOGY

The enzymatic Total bile acids 21 FS test is based on a specific 3-α-hydroxysteroid dehydrogenase cycling reaction converting Thio-NAD to Thio-NADH. In a second reaction step, oxidized bile acids are reduced by the same enzyme with subsequent reduction of NADH to NAD. The rate of Thio-NADH formation is determined by a change of absorbance at 405/600 nm, which is directly proportional to the concentration of bile acids in the sample material [3]. The validation of the new application was performed according to Clinical and Laboratory Standards Institute (CLSI) protocols and following the new European regulation for *in vitro* diagnostics (2017/745). All results were obtained in 1:100 diluted stool extracts. Comparative studies were performed with 122 stool extracts and evaluated by Passing and Bablok regression analysis.

RESULTS

Linearity of Total bile acids 21 FS test in stool extracts is up to 130 μ mol/L [**Fig. 1**]. Total bile acids 21 FS shows a very good repeatability [CV of \leq 2.06%; **Tab. 1**] and good total precision [CV \leq 4.09%; **Tab. 2**]. Method comparison against a competitor test (n=122) demonstrated good correlation [r = 0.988; y = 1.22 x + 1.89 μ mol/L; **Fig. 2**]. There were no significant interferences with common endogenous stool substances. [**Fig. 3**]. Compared to a competitor assay, the DiaSys test displayed more precise recovery values of clinically relevant bile acids [**Tab. 4**].

či 40 - 20 -		tal L			y = 1.22 x + 1.89 n = 122 r = 0.988	Mean (n=80)	Sample 1 14.8	Sample 2 72.5	Sample 3 120	
0 20 40 6	140				SD	0.607	2.54	4.13		
	ol/L]	Competitor total bile acids [µmol/L] Tecan Sunrise			CV [%]	4.09	3.51	3.44		
Figure 1: Linearity up to 13 Dilution 1:100]	30 µmol/L total bile ad		R: Method comparisor or. [Dilution 1:100]*	n (C	LSI) DiaSys vs.	Table 2: Total pred	cision (CLSI) [[Dilution 1:100]		
Bile Acid	Reference values RP-E SI-MS/MS	Recovery values DiaSys Total bile acids 21 FS	Recovery values Competitor assay		Interfering	Interferences i	Interferences in stool sample		Analyte concentration	
Cholic acid	38.9	[%] 101	[%] 105		Substance					
Chenodeoxycholic acid	39.0	96	142							
Deoxycholic acid	45.4	77	144	Ш	Ascorbic acid	1.20 ו	mg/dL	3	0.5	
Glycocholic acid	52.9	80	83	Ш		1.20 ו	mg/dL	8	6.6	
Glycochenodeoxycholic acid	48.8	78	116	Ш	Bilirubin conjugated		0.74 mg/dL 0.74 mg/dL		31.8 91.8	
Glycoursodeoxycholic acid	60.9	99	65		Bilirubin unconjugated		mg/dL mg/dL		1.1 0.3	
Taurocholic acid	34.0	123	123	Ш	Homoglobin	120	120 mg/L		30.8	
Taurochenodeoxycholic acid	47.0	88	121		Hemoglobin		mg/L	8	8.9	
Taurodeoxycholic acid	46.8	93	162		Immunoglobulin A		ng/L ng/L		0.7 7.6	
Ursodeoxycholic acid	54.8	101	67		Linomia	240	mg/L	3	0.1	
Glycodeoxycholic acid	55.1	73	133		Lipemia		mg/L	8	4.7	
able 3: Recovery studies	on various primary a	nd secondary bile	acids (LC/MS)		Table 4 : Minimized int	erferences from end	dogenous subs ⁻	tances		

*Red squares: sample dilution for competitor test due to limited measuring range

CONCLUSION

The successful application of DiaSys Total bile acids 21 FS for stool samples on the automated analyzer respons[®] 910 combined with the remarkable performance data, makes this innovative approach cost-efficient and timesaving. The widely used and uncomplicated method ensures a convenient and fast workflow for TBA determination in stool in routine laboratories.

REFERENCES

- 1. Walters JRF. Making the Diagnosis of Bile Acid Diarrhea. Am J Gastroenterol. 2020;115:1974-1975.
- 2. Vijayvargiya P, Camilleri M, Shin A, Saenger A. Methods for diagnosis of bile acid malabsorption in clinical practice. Clin Gast Hepatol. 2013;11:1232-9.
- 3. Zhang GH, Cong AR, Xu GB, et al. An enzymatic cycling method for the determination of serum total bile acids with recombinant 3-alpha-hydroxysteroid dehydrogenase. Biochemical and biophysical research communications. 2005;326: 87–92.