

The New respons 920[®]System - Adaptation of a Panel of Kidney Disease Markers H. Baethies, B. Wehle, A. Nadem, S. Caspari, S. Hoffmann, R. Schenk, E. Metzmann, T. Hektor

Introduction

The DiaSys respons[®]920 system is a fully automated, random access analyser designed for small to medium size workloads. The system has a throughput of about 240 tests/h with ISE and 200 tests/h without. Key features are the one-grip loading of a complete reagent set (twin-container). Up to 30 slots for refrigerated and barcoded reagent containers are on board. The system features an optional 4 channel ISE. A panel of more than 60 clinical chemistry and immunoturbidimetric methods is available.

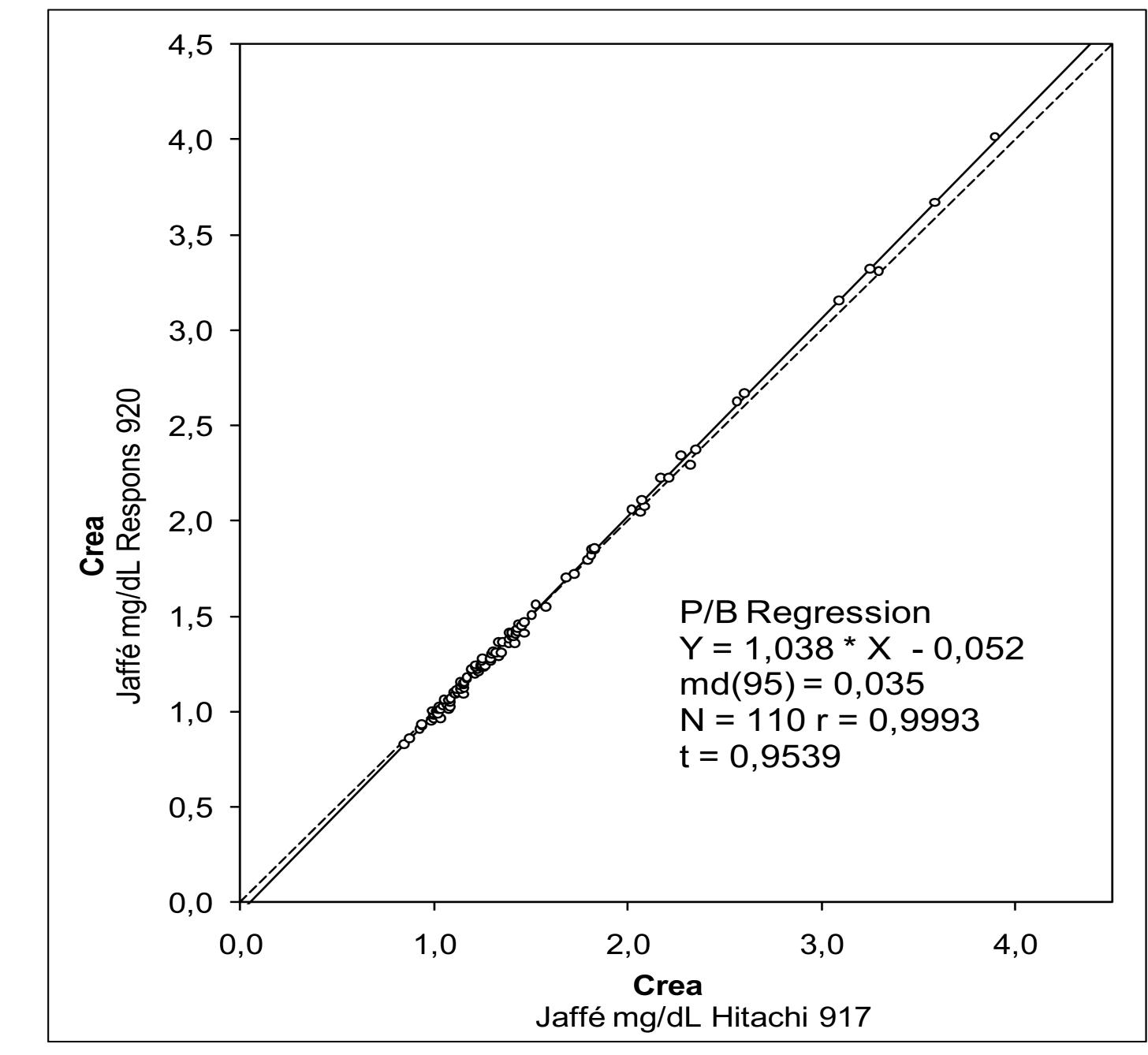
Figure 1: DiaSys respons[®]920

Because of the growing relevance and the steadily increasing number of cases of metabolic syndrome and diabetes in many countries, the adaptation of a panel of kidney disease markers has been chosen to demonstrate the performance of the system.

This kidney disease package includes the following assays:

Creatinine **Cystatin C Total Protein** Urea **Urinary Albumin**

DiaSys Diagnostic Systems GmbH, Alte Strasse 9, 65558 Holzheim, Germany, www.diasys-diagnostics.com


Results

Assay	Unit		Range	
Creatinine	mg/dL	0.10	-	15
Urea	mg/dL	3.00	-	300
Albumin U/CSF	mg/L	2.00	-	350
Total Protein	g/dL	0.05	-	15
Cystatin C	mg/L	0.06	-	8.0

Table 1: Summary Measuring Ranges

Assay	Unit	Slope	Intercept	r	n
Creatinine	mg/dL	1.038	-0.052	0.999	110
Urea	mg/dL	1.010	1.120	0.999	110
Albumin U/CSF	mg/L	0.935	1.400	0.999	92
Total Protein	g/dL	1.020	0.017	0.955	110
Cystatin C	mg/L	0.959	-0.043	0.998	100

Table 2: Summary Method Comparison

		Sample 1		Sample 2		Sample 3	
Assay	Unit	Mean	CV %	Mean	CV %	Mean	CV %
Creatinine	mg/dL	1.02	2.68	1.21	3.01	7.57	0.88
Urea	mg/dL	39.2	2.54	77.8	2.90	152	2.34
Albumin U/CSF	mg/L	20.3	3.01	34.1	1.55	106	0.56
Total Protein	g/dL	5.09	1.02	6.20	0.93	10.9	0.90
Cystatin C	mg/L	0.70	2.33	0.95	2.26	3.08	1.88

Table 3: Summary Precision in Series (n=20)

		Sample 1		Sample 2		Sample 3	
Assay	Unit	Mean	CV %	Mean	CV %	Mean	CV %
Creatinine	mg/dL	1.00	3.21	1.11	2.59	7.53	2.63
Urea	mg/dL	39.8	2.22	66.9	3.68	150	2.24
Albumin U/CSF	mg/L	20.8	3.46	35.0	2.91	110	1.94
Total Protein	g/dL	4.91	2.11	5.96	1.62	11.0	2.25
Cystatin C	mg/L	0.91	3.71	1.12	3.08	3.44	3.53

Table 4: Summary Precision from Day-to-Day (n=20)

Interferent		Creatinine	Urea	Albumin U/CSF		Total	Cystatin C
				Serum	Urine	Protein	
Lipid	mg/dL	1800	2000	2000	-	2000	1000
Bilirubin	mg/dL	3	60	60	25	60	60
Hemoglobin	mg/dL	500	1000	1000	240	500	1000
Ascorbate	mg/dL	30	30	-	-	30	-
Urea	g/L	-	-	-	40	-	-
Dextran	mg/dL	-	-	-	-	2000	-
Rheumatoid factor	r IU/mL	-	-	-	_	-	600

Table 5: Summary Interferences (Table indicates the maximum tolerable interferences within ± 10% limits)

Materials & Methods

The assay adaptation and performance verification was carried out on 3 DiaSys respons[®]920 systems in parallel. All reagents, calibrators and controls were provided by DiaSys Diagnostic Systems GmbH. Method comparisons were performed on DiaSys respons[®]920 and Hitachi 917 as a reference system. The data was evaluated by using regression analysis according to Passing and Bablok [1-3]. Inter- and intra-assay imprecision data were recorded according to a DiaSys internal protocol in serial 20-fold repetition and a 4-fold day-to-day repetition over 5 days, respectively [4-5]. The analytical sensitivity was determined by adding 3 SD to the mean signal of a 20-fold repeated blank measurement. The assay interferences were assessed according to a DiaSys internal protocol based on CLSI guidelines [6].

Conclusion

The DiaSys respons[®]920 benchtop analyser demonstrated a good precision and accuracy and the ease of workflow fulfills the needs of mid-sized laboratories. The analytical performance compares very well to the established Hitachi 917 floor model analyser and is fully compliant with the quality assurance demands of a state of the art clinical laboratory.

References

[1] H. Passing and W. Bablok. A New Biometrical Procedure for Testing the Equality of Measurements from Two Different Analytical Methods Part 1. J Clin Chem Clin Biochem (1983);21(11):709-720.

[2] H. Passing and W. Bablok. Comparison of Several Regression Procedures for Method Comparison Studies and Determination of Sample Sizes Part 2. J Clin Chem Clin Biochem (1984);22(6):431-445.

[3] CLSI. Method Comparison and Bias Estimation Using Patient Samples; approved guideline-second edition. CLSI Document EP9-A2. Wayne (PA): CLSI; 2002.

[4] La Penberthy. A Users Guide to Statistics in Clinical Chemistry. J Clin Biochem Revs (1986);7:3947.

[5] CLSI. Evaluation of Precision Performance of Quantitative Measurement Methods; approved guideline-second edition. CLSI Document EP5-A2. Wayne (PA): CLSI; 2004.

[6] CLSI. Interference testing in clinical chemistry; approved guideline-second edition. CLSI Document EP7-A2. Wayne (PA): CLSI; 2005.