GLDH FS *

DGKC

Diagnostic reagent for quantitative in vitro determination of glutamate dehydrogenase (GLDH) in serum or plasma on photometric systems

Order information

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Kit size</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2411 99 10 021</td>
<td></td>
<td>5 x 20 mL</td>
<td>1 x 25 mL</td>
</tr>
<tr>
<td>1 2411 99 10 930</td>
<td></td>
<td>4 x 20 mL</td>
<td>2 x 10 mL</td>
</tr>
<tr>
<td>1 2411 99 90 314</td>
<td></td>
<td>10 x 20 mL</td>
<td>2 x 30 mL</td>
</tr>
</tbody>
</table>

Summary [1,2]

Glutamate dehydrogenase (GLDH) is a mitochondrial enzyme which is present in many tissues. Significant elevations of the GLDH activity are measured in necrosis of hepatocytes, as in acute toxic liver necrosis and in hypoxic liver diseases. The measurement of GLDH is used to evaluate the extent of parenchymal liver damage and, in conjunction with the transaminases ALAT/GPT and ASAT/GOT, in the differential diagnosis of liver disorders. The calculation of the (ALAT+ASAT)/GLDH ratio enables to differentiate between inflammatory liver diseases and liver necrosis due to intoxication or ischemia.

Method

Optimized UV test, according to recommendations of the DGKC (German Society of Clinical Chemistry) [3]

Principle

\[\alpha\text{-Ketoglutarate} + \text{NADH} + \text{NH}_4^+ \stackrel{\text{GLDH}}{\rightarrow} \text{L-Glutamate} + \text{NAD}^+ + \text{H}_2\text{O} \]

Reagents

Components and Concentrations

R1:
- Triethanolamine pH 8.0 75 mmol/L
- \(\alpha\)-Ketoglutarate 10 mmol/L
- Ammonium acetate 150 mmol/L
- EDTA 3.75 mmol/L
- ADP 1.5 mmol/L
- LDH \(\geq 2.3\) kU/L

R2:
- NADH 1.3 mmol/L
- NADH 1.3 mmol/L

Storage Instructions and Reagent Stability

The reagents are stable up to the end of the indicated month of expiry, if stored at 2 – 8°C and contamination is avoided. Reagents must be protected from light. Do not freeze the reagents!

Warnings and Precautions

1. The reagents contain sodium azide (0.95 g/L) as preservative. Do not swallow! Avoid contact with skin and mucous membranes.
2. Reagent 1 contains biological material. Handle the product as potentially infectious according to universal precautions and good laboratory practice.
3. In very rare cases, samples of patients with gammopathy might give falsified results [6].
4. Sulfasalazine and sulfapyridine medication may lead to false results in patient samples. Blood collection must be done before drug administration.
5. Please refer to the safety data sheets and take the necessary precautions for the use of laboratory reagents. For diagnostic purposes, the results should always be assessed with the patient’s medical history, clinical examinations and other findings.
6. For professional use only!

Waste Management

Please refer to local legal requirements.

Reagent Preparation

The reagents are ready to use.

Materials required but not provided

| NaCl solution 9 g/L |

General laboratory equipment

Specimen

Serum, heparin or EDTA plasma

Stability [4]:
- 7 days at 20 – 25°C
- 7 days at 4 – 8°C
- 4 weeks at –20°C

Discard contaminated specimens! Only freeze once!

Assay Procedure

Application sheets for automated systems are available on request.

Wavelength 340 nm, Hg 334 nm

Optical path 1 cm

Temperature 37°C

Measurement Against air

Sample/Calibrator	150 µL
Reagent 1	1000 µL
Reagent 2	250 µL

Mix, incubate for approx. 3 min., then add:

Mix, read absorbance after 30 sec. and start stopwatch.

Read absorbance again after 1, 2 and 3 min.

Calculation

With factor

From absorbance readings calculate \(\Delta A/min\) and multiply by the corresponding factor from the table below:

\[\Delta A/min \times \text{factor} = \text{GLDH activity [U/L]} \]

With calibrator

\[\text{GLDH [U/L]} = \frac{\Delta A/min \times \text{Sample}}{\Delta A/min \times \text{Calibrator}} \times \text{Conc. Calibrator [U/L]} \]

Conversion factor

\[\text{GLDH [U/L]} \times 0.0167 = \text{GLDH [µkat/L]} \]

Calibrators and Controls

For the calibration of automated photometric systems, DiaSys TruCal U calibrator is recommended. This method is traceable to the Molar Extinction Coefficient. DiaSys TruLab N and P controls should be assayed for internal quality control. Each laboratory should establish corrective action in case of deviations in control recovery.

<table>
<thead>
<tr>
<th>Cat. No.</th>
<th>Kit size</th>
<th>TruCal U</th>
<th>5 9100 99 10 063</th>
<th>20 x 3 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TruLab N</td>
<td>5 9000 99 10 062</td>
<td>20 x 5 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TruLab P</td>
<td>5 9050 99 10 062</td>
<td>20 x 5 mL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 9050 99 10 061</td>
<td>6 x 5 mL</td>
</tr>
</tbody>
</table>

* fluid stable
Performance Characteristics

Measuring range
The test has been developed to determine GLDH activities within a measuring range from 2 – 120 U/L. When values exceed this range samples should be diluted 1 + 5 with NaCl solution (9 g/L) and results multiplied by 6.

Specificity/Interferences
No interference was observed by ascorbic acid up to 30 mg/dL, bilirubin up to 60 mg/dL and hemoglobin up to 500 mg/dL. Lipemia interferes. For further information on interfering substances refer to Young DS [5].

Sensitivity/Limit of Detection
The lower limit of detection is 2 U/L.

Precision

<table>
<thead>
<tr>
<th></th>
<th>Mean [U/L]</th>
<th>SD [U/L]</th>
<th>CV [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra-assay precision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample 1</td>
<td>5.77</td>
<td>0.51</td>
<td>8.78</td>
</tr>
<tr>
<td>Sample 2</td>
<td>18.3</td>
<td>0.39</td>
<td>2.11</td>
</tr>
<tr>
<td>Sample 3</td>
<td>32.0</td>
<td>0.78</td>
<td>2.43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-assay precision</th>
<th>Mean [U/L]</th>
<th>SD [U/L]</th>
<th>CV [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>6.18</td>
<td>0.43</td>
<td>6.98</td>
</tr>
<tr>
<td>Sample 2</td>
<td>16.1</td>
<td>0.49</td>
<td>3.02</td>
</tr>
<tr>
<td>Sample 3</td>
<td>33.2</td>
<td>0.80</td>
<td>2.40</td>
</tr>
</tbody>
</table>

Method Comparison
A comparison of DiaSys GLDH FS DGKC (y) with a commercially available reagent according to DGKC (x) using 76 samples gave following results:
y = 1.034 + 0.006 U/L; r = 0.999

Reference Range [1]

<table>
<thead>
<tr>
<th>Gender</th>
<th>Reference Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>≤ 5.0 U/L (0.083 µkat/L)</td>
</tr>
<tr>
<td>Men</td>
<td>≤ 7.0 U/L (0.117 µkat/L)</td>
</tr>
</tbody>
</table>

Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.

Literature

Manufacturer
DiaSys Diagnostic Systems GmbH
Alte Strasse 9 65558 Holzheim Germany