

ß-Hydroxybutyrate 21 FS*

Diagnostic reagent for quantitative in vitro determination of β-hydroxybutyrate in serum or plasma on DiaSys respons®910

Order Information

Cat. No. 1 3711 99 10 921

4 twin containers for 120 tests each

Method

Enzymatic determination with β-hydroxybutyrate-dehydrogenase

Principle

Acetoacetate + NADH + H+

The absorbance at 340 nm is proportional to the $\beta\mbox{-hydroxybutyrate}$ concentration in the sample.

Reagents

Components and Concentrations

R1:	Buffer	pH 8.5	< 150 mmol/L
	β-Hydroxybutyr	ate-dehydrogenase	≥ 1 kU/L
R2:	Buffer	pH 4.3	< 70 mmol/L
	NAD	•	< 25 mmol/L
Standard:			1 mmol/L

Storage Instructions and Reagent Stability

The reagents and the standard are stable up to the end of the indicated month of expiry, if stored at $2-8^{\circ}\text{C}$ and contamination is avoided. Do not freeze the reagents and protect from light. DiaSys respons® containers provide protection from light.

Warnings and Precautions

- Reagent 1: Warning. H319 Causes serious eye irritation. P264 Wash hands and face thoroughly after handling. P 280 Wear protective gloves/protective clothing/eye protection/face protection. P305+P351+P338 If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P337+ P313 If eye irritation persists: Get medical advice/attention.
- Reagent 1 contains sodium azide (0.95 g/L) as preservative.
 Do not swallow! Avoid contact with skin and mucous membranes.
- Reagent 1 contains biological material. Handle the product as potentially infectious according to universal precautions and good laboratory practice.
- In very rare cases, samples of patients with gammopathy might give falsified results [5].
- Refer to the safety data sheets and take the necessary precautions for the use of laboratory reagents. For diagnostic purposes, the results should always be assessed with the patient's medical history, clinical examinations and other findings.
- 6. For professional use only!

Waste Management

Refer to local legal requirements.

Reagent Preparation

The reagents and the standard are ready to use. The bottles are placed directly into the reagent rotor.

Specimen

Serum or heparin plasma

Stability [6]: 1 month at 20 – 25°C 1 month at 2 – 8°C 1 month at –20°C

Only freeze once. Discard contaminated specimens.

Calibrators and Controls

DiaSys β -Hydroxybutyrate Standard FS is recommended for calibration. β -Hydroxybutyrate Standard FS values have been made traceable to the weighing of purest β -hydroxybutyrate. Use DiaSys TruLab N and P for internal quality control. Each laboratory should establish corrective action in case of deviations in control recovery.

	Cat. No.	K	(it siz	е
β-Hydroxybutyrate Standard FS	1 3700 99 10 030	3	x 3	mL
TruLab N	5 9000 99 10 062	20	x 5	mL
	5 9000 99 10 061	6	x 5	mL
TruLab P	5 9050 99 10 062	20	x 5	mL
	5 9050 99 10 061	6	x 5	mL

Performance Characteristics

Exemplary data mentioned below may slightly differ in case of deviating measurement conditions.

Measuring range			
Measuring range from 0.05	Measuring range from 0.05 – 6.0 mmol/L β-hydroxybutyrate.		
	ations re-measure samples after		
manual dilution with NaCl solu	manual dilution with NaCl solution (9 g/L) or use rerun function.		
LOD (Limit of detection)** 0.05 mmol/L β-hydroxybutyrate			
LOB (Limit of blank) 0.004 mmol/L β-hydroxybutyrate			
Onboard stability 6 weeks			
Calibration stability	6 weeks		

Interfering substance	Interferences <10% up to	HBUT [mmol/L]
Acetaminophen	1.50 mmol/L	0.226
-	1.50 mmol/L	2.86
Acetoacetate	5.00 mmol/L	0.208
	5.00 mmol/L	2.91
Acetylsalicylic acid	60 mg/dL	0.200
	60 mg/dL	2.88
Ascorbic acid	50 mg/dL	0.211
	50 mg/dL	2.89
Bilirubin (conjugated)	50 mg/dL	0.224
	50 mg/dL	2.87
Bilirubin (unconjugated)	50 mg/dL	0.225
	50 mg/dL	2.88
Hemoglobin	500 mg/dL	0.223
	1000 mg/dL	2.87
α-Hydroxybutyrate	7.0 mmol/L	0.270
	7.0 mmol/L	1.26
Lipemia (triglycerides)	1000 mg/dL	0.243
·	1500 mg/dL	2.21
NAC	1000 mg/L	0.204
	1000 mg/L	2.86

No interference by lactate and lactate dehydrogenase. For further information on interfering substances refer to Young DS [7].

Precision			
Within run (n=20)	Sample 1	Sample 2	Sample 3
Mean [mmol/L]	0.265	0.517	2.42
CV [%]	1.43	1.26	0.715
Total precision CLSI (n=80)	Sample 1	Sample 2	Sample 3
Mean [mmol/L]	0.273	0.528	2.48
CV [%]	1.87	1.71	2.31

Reagent information * fluid stable

Method comparison (n = 100)		
Test x	DiaSys ß-Hydroxybutyrate 21 FS BioMajesty® JCA-BM6010/C	
Test y	DiaSys ß-Hydroxybutyrate 21 FS respons®910	
Slope	0.999	
Intercept	–0.006 mmol/L	
Coefficient of correlation	0.9998	

^{**} according to CLSI document EP17-A2, vol. 32, no.8

Conversion Factor

ß-Hydroxybutyrate [mg/dL] x 0.0962 = ß-Hydroxybutyrate [mmol/L]

Reference Range [1]

 $\begin{array}{ccc} & & & [\text{mmol/L}] & & [\text{mg/dL}] \\ \text{Fasting} & & 0.02 - 0.27 & & 0.21 - 2.81 \end{array}$

Each laboratory should check if the reference ranges are transferable to its own patient population and determine own reference ranges if necessary.

Literature

- Thomas L. Clinical Laboratory Diagnostics. 1st ed. Frankfurt: TH-Books Verlagsgesellschaft; 1998. p. 155-60.
- Sacks DB. Carbohydrates. In: Burtis CA, Ashwood ER, editors. Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B Saunders Company; 1999. p. 785–787.
- Edward C. Chao. SGLT-2 Inhibitors: A New Mechanism for Glycemic Control. Clin Diabetes 2014; 32(1): 4-11.
- Ogawa W, Sakaguchi K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: possible mechanism and contributing factors. J Diabetes Investig. 2016; 7(2):135-8.
- Bakker AJ, Mücke M. Gammopathy interference in clinical chemistry assays: Mechanism, detection and prevention. Clin Chem Lab Med 2007; 45(9): 1240–1243.
- 6. Data on file at DiaSys Diagnostic Systems GmbH.
- Young DS. Effects of Drugs on Clinical Laboratory Tests. 5th ed. Volume 1 and 2. Washington, DC: The American Association for Clinical Chemistry Press 2000.

Manufacturer

DiaSys Diagnostic Systems GmbH Alte Strasse 9 65558 Holzheim Germany

β-Hydroxybutyrate 21 FS

Application for serum and plasma samples

This application was set up and evaluated by DiaSys. It is based on the standard equipment at that time and does not apply to any equipment modifications undertaken by unqualified personnel.

Identification		
This method is usable for analysis:	Yes	
Twin reaction:	No	
Name:	HBUT 21	
Shortcut:		
Reagent barcode reference:	069	
Host reference:	069	

Technic	
Type:	Linear kinetic
First reagent:[µL]	160
Blank reagent	Yes
Sensitive to light	
Second reagent:[µL]	40
Blank reagent	No
Sensitive to light	
Main wavelength:[nm]	340
Secondary wavelength:[nm]	700
Polychromatic factor:	1.0000
1 st reading time [min:sec]	04:48
Last reading time [min:sec]	10:00
Reaction way:	Increasing
Linear Kinetics Substrate depletion: Absorbance limit	0.6500
Linearity: Maximum deviation [%]	
Fixed Time Kinetics Substrate depletion: Absorbance limit	
Endpoint	
Stability: Largest remaining slope	
Prozone Limit [%]	

Reagents	
Decimals	
Units	

Sample	
Diluent	DIL A (NaCI)
Hemolysis:	2.27 (1140.)
Agent [µL]	0 (no hemolysis)
Cleaner	o (no nemeryele)
Sample [µL]	0
σαπρισ [με]	
Technical limits	
Concentration technical limits-Lower	0.0040
Concentration technical limits-Upper	6.0000
SERUM	
Normal volume [µL]	12.0
Normal dilution (factor)	1
Below normal volume [µL]	
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	
URINE	
Normal volume [µL]	12.0
Normal dilution (factor)	1
Below normal volume [µL]	<u>'</u>
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	
PLASMA	
Normal volume [µL]	12.0
Normal dilution (factor)	12.0
	I I
Below normal volume [µL]	
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	
CSF	10.0
Normal volume [µL]	12.0
Normal dilution (factor)	1
Below normal volume[µL]	
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	
Whole blood	
Normal volume [µL]	12.0
Normal dilution (factor)	1
Below normal volume[µL]	
Below normal dilution (factor)	
Above normal volume [µL]	
Above normal dilution (factor)	

Results	
Decimals	2
Units	mmol/L
Correlation factor-Offset	0.0000
Correlation factor-Slope	1.0000

Range	
Gender	All
Age	
SERUM	>=0.02 <=0.27
URINE	
PLASMA	>=0.02 <=0.27
CSF	
Whole blood	
Gender	
Age	
SERUM	
URINE	
PLASMA	
CSF	
Whole blood	

Contaminants		
Please refer to r910 Carryover Pair Table		

Calibrators details		
Calibrator list	Concentration	
Cal. 1/Blank	0	
Cal. 2	*	
Cal. 3		
Cal. 4		
Cal. 5		
Cal. 6		
	Max delta abs.	
Cal. 1	0.100	
Cal. 2	0.100	
Cal. 3		
Cal. 4		
Cal. 5		
Cal. 6		
Drift limit [%]	0.80	

Calculations		
Model	X	
Degree	1	

^{*} Enter calibrator value

Application respons®910 March 2022/4